Fabrication of Micropatterned Hydrogels for Neural Culture Systems using Dynamic Mask Projection Photolithography
نویسندگان
چکیده
Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the photocrosslinkable or self polymerizing hydrogel, or selectively adhered to the permeable support membrane using cell-restrictive photopatterning. Using the DMD, we created hydrogel constructs up to ~1mm thick, but thin film (<200 μm) PEG structures were limited by oxygen quenching of the free radical polymerization reaction. We subsequently developed a technique utilizing a layer of oil above the polymerization liquid which allowed thin PEG structure polymerization. In this protocol, we describe the expeditious creation of 3D hydrogel systems for production of microfabricated neural cell and tissue cultures. The dual hydrogel constructs demonstrated herein represent versatile in vitro models that may prove useful for studies in neuroscience involving cell survival, migration, and/or neurite growth and guidance. Moreover, as the protocol can work for many types of hydrogels and cells, the potential applications are both varied and vast.
منابع مشابه
Facile micropatterning of dual hydrogel systems for 3D models of neurite outgrowth.
Understanding how microenvironmental factors influence neurite growth is important to inform studies in nerve regeneration, plasticity, development, and neurophysiology. In vitro models attempting to more accurately mimic the physiological environment by provision of a 3D growth matrix may provide useful foundations. Some limitations of thick 3D culture models include hampered solute transport,...
متن کاملDIY fabrication of microstructures by projection photolithography
Previous hobbyists have demonstrated fabrication of single macroscale transistors and simple gates in silicon. These experiments, however, have been hampered by the inability to create features much below 1mm in size. This paper presents a simple and affordable projection photolithography technique which can be used to create microstructures using easily obtainable materials. Methods of alignme...
متن کاملStop-flow lithography to generate cell-laden microgel particles.
Encapsulating cells within hydrogels is important for generating three-dimensional (3D) tissue constructs for drug delivery and tissue engineering. This paper describes, for the first time, the fabrication of large numbers of cell-laden microgel particles using a continuous microfluidic process called stop-flow lithography (SFL). Prepolymer solution containing cells was flowed through a microfl...
متن کاملSnapshot Mask-less fabrication of embedded monolithic SU-8 microstructures with arbitrary topologies
Microscope projection lithography offers an affordable alternative for fast prototyping of 3D polymer microstructures. Here we introduce a 3D mask-less approach operating on a routine epi-fluorescene microscope that enables the fabrication of 3D microstructures such as lenses, pillar forests, cavities and channels embedded in a monolithic SU-8 structure defined in a single exposure step. Fabric...
متن کاملSynergistic NGF/B27 Gradients Position Synapses Heterogeneously in 3D Micropatterned Neural Cultures
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we present a novel microfluidic based cell culture method that combines 3D micropatterning of hydrogel layers with linear chemical gradient formation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 424 شماره
صفحات -
تاریخ انتشار 2011